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Abstract—Proportional-integral-derivative (PID) controllers
are described in most automatic control textbooks. The ap-
plication of PID controllers is widely spread in automation of
mechanical processes where control of motors is of concern.
This paper focuses on implementation of the PID control when
used for regulation of dc motors. Two basic PID structures for
position regulation of armature-controlled dc motors are studied:
the classical structure based on PI position loop plus velocity
feedback, and a hierarchical two-loop feedback structure invoking
a velocity proportional-integral (PI) inner loop. It is shown that
the latter requires simpler stability conditions than the former.
Basic concepts from automatic control are evoked in this study,
namely, transfer function, characteristic polynomial, stability, and
Routh–Hurwitz criterion. Experiments on a direct-drive motor
are provided to illustrate the PID control performance.

Index Terms—DC motor control, PID control, Routh–Hurwitz
criterion, stability.

I. INTRODUCTION

ONE of the most useful control algorithms in linear and
nonlinear control systems is proportional-integral-deriva-

tive (PID) control. PID control for position regulation of dc mo-
tors is a popular basic example evoked in many linear control
textbooks [1], [2]. Notwithstanding, the PID control of dc mo-
tors can lead to an unstable closed-loop system as long as the
PID gains are unsuitably selected.

Depending on the signals available for measurement, the PID
control can be implemented evoking several structures [3], [4].
This paper studies—from a stability viewpoint—two structures
for implementing the PID control of dc motors assuming that
shaft position and velocity are available for measurement. The
first structure arises from a proportional-integral (PI) position
loop plus velocity feedback; the second one derives from a hier-
archical structure based in a velocity inner loop plus a position
outer loop.

In this paper, the authors show that implementation of the PID
control based on the philosophy of two loops for constructing
a hierarchical controller keeps the closed-loop system stability
with conditions less stringent than those required when the PID
control is implemented as a PI position loop plus velocity feed-
back.

A classical linear description of an armature-controlled dc
motor—neglecting armature inductance—is given by [1], [2],
[5], and [6]
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where
output shaft angular position;
input voltage;
rotor inertia;
viscous friction.

The constants , , and are electrical characteristics of
the motor. All these parameters are strictly positive constants.

The position regulation aim consists of ensuring

(2)

where is a constant which specifies the dc motor desired shaft
angular position.

The basic textbook structure of the PID control law driven by
the shaft position error defined as is given by

(3)

where is the differential operatorand , and
are the proportional, integral, and derivative gains, respectively.

II. PID CONTROL: IMPLEMENTATION BASED ON PI FEEDBACK

OF POSITION ERROR

PID control (3) can be implemented as depicted in the block
diagram of Fig. 1. This implementation corresponds to a PI feed-
back of position error plus velocity feedback according to

(4)

(5)

The closed-loop equation is obtained by substituting the con-
trol law (4) into the motor model (1)

(6)

where is defined in (5). The third-order characteristic polyno-
mial associated with (6) is

(7)

where is the Laplace complex variable.
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Fig. 1. PID control based on PI feedback of position error~q.

A sufficient condition for a feedback system to be stable1 is
that all poles of the system transfer function have negative real
parts [2], [7]. Using Routh–Hurwitz stability criterion [2], [7],
one can obtain the following simple condition for the character-
istic polynomial (7) to be stable2

(8)

According to (8), one should select carefully the gains ,
and . For example, once and ( ) are chosen, then the
integral gain should be adjusted to satisfy with (8). However,
this action requires the knowledge—or suitable bounds—of all
the motor parameters: , and .

III. PID CONTROL: IMPLEMENTATION BASED ONPI FEEDBACK

OF VELOCITY ERROR

The PID control (3) for position regulation of motors can also
be implemented as a control scheme based on two loops as de-
picted in Fig. 2.

First, one must considervelocity controlusing the following
PI controller which defines the inner loop control

(9)

(10)

where stands for the shaft velocity command;denotes the
inner loop velocity error defined by

(11)

and the control gains , and are assumed positive con-
stants. One should note that the controller (9) and (10) has an
inverse-dynamics structure with PI velocity error feedback plus
acceleration feedforward where the constantis rendered as an
estimationof the product .

The outer loop control is achieved defining the velocity com-
mand as

(12)

where is a positive constant. Because is assumed to be
constant, then the outer loop velocity error defined by
becomes .

1A linear time-invariant system is stable if its output is bounded for any
bounded input [2].

2See the Appendix for the use of Routh–Hurwitz criterion in a third-order
system.

The control action (9) can be expressed in terms of the posi-
tion error using (11) and (12) as

(13)

which has the structure of the PID control (3). The relationship
between the gains of these controllers is

(14)

and (15)

(16)

Substituting the control law (13) into the motor equation (1)
leads to the closed-loop system in terms of the position error

(17)

where is defined by

The third-order characteristic polynomial of system (17) is
given by

(18)

One can again use the Routh–Hurwitz criterion to find condi-
tions on which the polynomial (18) has zeros with negative real
part. A sufficient condition for polynomial (18) to have zeros
with negative real part3 is that its coefficients be positive, i.e.,

(19)

(20)

(21)

and

(22)

be satisfied. So, in order to satisfy conditions (19)–(22) for en-
suring stability of the closed-loop system, it is enough that the
gains be positive and the parameterbe chosen such
that

(23)

3See the Appendix.



KELLY AND MORENO: LEARNING PID STRUCTURES 375

Fig. 2. PID control based on PI feedback of velocity error~!.

Fig. 3. Experimental setup.

In sum, the implementation of the PID controller as two-loop
of feedback (9), (10), and (12) ensures closed-loop stability for
any selection of the controller parameters , and provided
that an upper bound on the product is available.

It is worth noticing that condition (23) is easier to check than
(8) evoked for stability of the PID implementation (4) and (5)
which needs in addition to the controller gains, also knowledge
of the following motor parameters: , and .

IV. EXPERIMENTAL RESULTS

Experiments on a direct-drive motor have been carried out in
order to show the performance of the PID control.

The experimental setup is depicted in Fig. 3. The motor used
in the experiments is the model DM1004C from Compumotor.
This motor is equipped with an optical incremental encoder
which provides a resolution of 655 360 pulses per revolution.

The control algorithm based on PI velocity feedback (9)–(12)
was coded in C language and executed at ms sam-
pling interval in a PC equipped with a data acquisition board
MFIO-3A from Precision MicroDynamics.

Experiments showed that static and Coulomb friction effects
at the motor shaft were present. These experiments are described
in details in [8]. Since they depended in a complex manner on
the motor position and velocity, the authors decide to consider
them as disturbances during experiments. The motor model has
the structure (1) where numerical value of the parameters are
listed in Table I.

TABLE I
PARAMETERS OF THEMOTOR

Fig. 4. Position error.

The experiment was carried out under the initial conditions:
and . The desired shaft position was 45 ,

and the controller parameters were

[1/s]
[V/rad]
[V s/rad] and
[V kg m /[Nm rad]]

It can be easily checked by straightforward substitution that
satisfies condition (23), thus the closed-loop system stability

is guaranteed.
The time evolution of the position error obtained from

the experiment is shown in Fig. 4. The position error response
presents a fast transient toward a neighborhood of zero. Then, it
continues to decrease slowly approaching zero due to the inte-
gral action. This situation is a typical behavior of exponentially
stable linear systems. A faster response can be achieved by
increasing the gain ; but it demands higher torques beyond
the limit prescribed by the motor manufacturer.

V. CONCLUDING REMARKS

The vast majority of regulators in the industry are linear PID
controllers. There are many reasons for this selection, including
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their long history of proven operation, which is well understood
by many operational, technical, and maintenance individuals.

The application of PID controllers to regulation of dc mo-
tors is widely spread in automation of mechanical processes.
Depending on the feedback signals available for measurement,
several alternatives for practical implementation structures of
PID controllers can be considered. This paper has discussed two
basic structures paying attention to stability issues.

The conclusion of this study—which involved automatic con-
trol concepts such as transfer function, characteristic polyno-
mial, stability, and Routh–Hurwitz criterion—is that implemen-
tation of PID control as a hierarchical control structure invoking
a velocity inner loop needs less stringent and easy to check con-
ditions for closed-loop system stability.

As a practical matter, experiments of the PID control of a
direct-drive motor were conducted and the results presented in
the paper.

APPENDIX

Consider the characteristic polynomial of a third-order
system expressed in the Laplace variablegiven by

(24)

Following the Routh–Hurwitz criterion [2], [7], the array of (24)
is

where

and

For the third-order system to be stable, it is necessary and suffi-
cient [2], [7] that the coefficients , and be positive
and .
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